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Introduction

The secondary reporting of community- and clinic-based 
diagnoses of autism spectrum disorder (ASD) often lacks 
the rigor of gold standard evaluations used in scientific 
research and may be biased by current diagnostic trends, 
parental concerns, and the practical exigencies of the mod-
ern health-care system. Therefore, in order to achieve the 
best possible estimate of ASD prevalence, one would ide-
ally test the entire target population using gold standard 
diagnostic tools. However, this approach is impracticable 
for multiple reasons: first, it is generally impossible to 
access an entire population; second, gold standard diag-
nostic tools are expensive in terms of time and resources 
(the Autism Diagnostic Observation Schedule (ADOS; 
Lord et al., 2001) and the Autism Diagnostic Interview–
Revised (ADI-R; Lord et al., 1994) require several hours 
to be administered, after which a diagnosis is rendered by 
a clinician who has undergone sufficient training to 
become satisfactorily reliable with these instruments). 
Testing the entire population with these costly diagnostic 
tools would be an inefficient way to uncover cases of a rare 
condition.

Therefore, the researcher settles for an estimate derived 
from a smaller sample and hopes to generalize from this 

sample back to the broader population. There are two basic 
epidemiological approaches to this study design, each with 
noted strengths and weaknesses. The first is a single-phase 
design, wherein a random subset of the population is 
selected, and gold standard diagnostic practices are applied 
to this smaller subset. This overcomes some costs of test-
ing the entire population, yet still lacks efficiency when the 
condition is rare; to achieve confidence that the true popu-
lation prevalence falls within an interval of any useful  
precision, one may need to administer hundreds, if not 
thousands, of tests on randomly selected individuals. And 
for double the precision, one must typically test far more 
than double the individuals—more like 3–4 times as many.

Two-phase designs attempt to overcome these limita-
tions by introducing a preliminary screening phase, in 
order to focus testing on a (non-random) sample of the 
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population that is more likely to have the rare condition. 
Gold standard diagnostic evaluations can be concentrated 
on the screen-positive sample, and the number of con-
firmed cases in this subset of individuals can be used to 
generalize back to the broader population. Under ideal 
conditions, introducing a first-phase screener (perhaps one 
of many available ASD screening questionnaires; see 
Baron-Cohen et al., 2001; Chandler et al., 2007; Posserud 
et al., 2006; Ritvo et al., 2011) theoretically allows for an 
efficient deployment of scarce resources.

A key factor in deriving a prevalence estimate with a 
two-phase design is how well the chosen screener discrim-
inates between those who truly have a given condition and 
those who truly do not (McNamee, 2003). For example, if 
one employs a screener with perfect sensitivity (i.e. 100% 
of screened individuals with ASD come up positive), then 
one can be confident that the screener will catch every case 
of ASD in the target population (i.e. there will be no missed 
cases lurking among the screen negatives). But if the 
screener has less than perfect sensitivity at a given cutoff 
score—as is generally true—then this must be factored 
into the design and analysis, and the prevalence estimate 
must be adjusted accordingly. Furthermore, if one is unsure 
about just how sensitive and specific the first screener is at 
a given threshold, this necessarily limits the precision of 
the resulting estimate (Erkanli et al., 1997). For these rea-
sons, using any single cutoff for the first-phase screener—
and not sampling any participants below that threshold for 
the second-phase evaluation—hinders the statistical esti-
mation of prevalence (Dunn et al., 1999).

Compounding uncertainty in both single-phase and 
two-phase designs is that the non-random selection of 
study participants (e.g. via non-response bias) can greatly 
affect the results (Posserud et al., 2010). For example, if 
individuals with ASD were twice as likely to respond to an 
advertisement to participate in a research study, then the 
respondents would no longer be a representative sample of 
the broader population from which they were drawn, and 
this non-response bias would ultimately result in a gross 
overestimate of ASD—unless the extent of this bias was 
quantified and factored into the analyses to appropriately 
adjust the prevalence estimate.

The optimal choice between a single-phase and two-
phase design can strongly depend on the circumstances—
for example, the rarity of the condition and the relative 
cost and performance of the screener compared to full 
assessment (Shrout and Newman, 1989). However, single-
phase designs are more straightforward to administer and 
analyze (Deming, 1977), and because of the methodologi-
cal complications that can be introduced by two-phase 
designs, some thoroughly welcome their demise (Prince, 
2003). Considerations like these have ignited an important 
discussion on the pages of Autism about whether some of 
the higher ASD prevalence estimates reported in recent 

years should be trusted (Durkin et al., 2014; Mandell and 
Lecavalier, 2014; Newschaffer, 2015). Here, we develop 
some of these arguments in a thorough and quantitative 
manner, illustrating the consequences of particular meth-
odological choices on resulting prevalence estimates. 
Rather than making purely theoretical points, we use a 
recent high-profile finding as a case study (Kim et  al., 
2011).

The authors of this study used a two-phase design to 
estimate that ASD affects 2.64% of 7- to 12-year-old chil-
dren in a district of South Korea. This was a striking find-
ing and attracted attention not only because the prevalence 
was higher than any other published estimate (Elsabbagh 
et  al., 2012), but also because the study concluded that 
90% of those with ASD in their target population were 
attending mainstream schools, and 72% had no history of 
psychiatric or psychological services whatsoever. The 
same data continue to be expanded upon in subsequent 
studies (Kim et al., 2014), and this research group’s find-
ings raise important questions. Does a hidden majority of 
undiagnosed ASD cases also exist in other countries? Is 
there something unique about South Korea that deserves 
additional investigation with respect to this unusually 
high rate?

At the outset, we wish to make it clear that this is not 
the only study for which these concerns may apply. One 
reason why we selected this study was because its highly 
ambitious scope and provocative conclusions resulted in 
commensurately high impact, via both the scientific litera-
ture (more than 450 Google Scholar citations to date)  
and mainstream channels (e.g. the statistic is listed on the 
official website of the Centers for Disease Control and 
Prevention). Another important factor was that this paper 
contained sufficient, comprehensible methodological 
detail, such that we could re-explore the analyses and work 
through them in quantitative ways.

We hope to convey a series of points, both general to 
the problem of prevalence estimation and specific to this 
particular case study.

1.	 The soundness of underlying assumptions is criti-
cal for the derivation of a meaningful prevalence 
estimate.

2.	 Certain assumptions can ultimately constrain  
other assumptions. A set of assumptions can be 
self-falsifying.

3.	 The uncertainty surrounding assumptions must be 
accounted for in the estimation procedure; other-
wise, confidence intervals will be artificially small.

4.	 Conclusion: in this particular case, a prevalence 
estimate of 2.64% was derived from implausible 
assumptions, resulting in an unreliable estimate 
and inflated confidence in the precision of this 
estimate.
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Methods

To begin, we summarize the methodology of Kim et al.’s 
(2011) paper, upon which we base our arguments. For 
complete details, we refer the interested reader to the origi-
nal publication and its supplementary materials.

The target population consisted of the 55,266 children 
(aged7–12 years) living in the Ilsan district of Goyang 
City, South Korea, at the time of the study. The study’s 
point prevalence estimate of 2.64% implies that, of the 
children in the target population, 55,266 × 2.64% = 1459 
were estimated to have had ASD. As part of the authors’ 
calculation, they estimated that 150 of these children with 
ASD were on the disability registry or in special education 
schools. Rates of ASD among this small subset of children 
(n = 294) were considered briefly and separately by the 
authors and do not factor prominently in the ensuing con-
cerns; nevertheless, this presumed rate implies that 
1459 – 150 = 1309 children with ASD were estimated by 
the authors to have been attending regular education 
schools.

Of the 41 regular education schools in the district, 30 
agreed to participate in the study. Not all families in the 
participating schools consented to participate in the first-
phase screener (the Autism Spectrum Screening 
Questionnaire (ASSQ)). One key assumption the authors 
used to derive the prevalence estimate (which we will 
revisit) was that the schools that participated and the self-
selected families who ultimately responded to the screener 
were no more and no less likely to have children with 
ASD—an explicit assumption of zero non-response bias. 
See Figure 1 for an illustration of this sampling procedure, 
presumed to have achieved an essentially random sample 
of 23,234 out of 54,972 children enrolled in regular schools 
in this district.

Given the assumed lack of bias in school participation, 
the authors’ best estimate of the number of children with 
ASD attending the participating regular education schools 
would be 1309 × 66.6% = 871. Then, given the assumed 
lack of self-selection bias in response to the screener, the 
authors’ best estimate of the number of children with ASD 
whose families consented to participate would be 
871 × 63.5% = 553. At this point, the 23,234 total children 
were screened (of which 553 should have had ASD, given 
a prevalence of 2.64%), primarily with the parent-com-
pleted portion of the ASSQ (about 1% of these children 
also had the teacher-completed portion of the ASSQ com-
pleted for them). Exactly 1742 children screened positive, 
and 21,492 screened negative.

Unfortunately, the precise sensitivity and specificity of 
the ASSQ at the cutoff scores used are unknown, and 
therefore one could not, at this phase, know just how many 
of the 1742 screen positives were true or false positives, 
nor how many of the 21,492 screen negatives were true or 
false negatives (see Table 1). But making some estimate of 

the sensitivity and specificity of the first-phase screener is 
an inescapable and critical step in a two-phase design that, 
like this one, does not sample any of the screen-negative 
participants (comprising 93% of respondents) for further 
assessment at the second phase (Erkanli et al., 1997).

One could use the second phase to calibrate the first-
phase screener (Bekmetjev et al., 2012); that is, sensitivity 
and specificity of the screening procedure (i.e. the first 
phase) could be estimated empirically by testing rates of 
ASD in both the screen-positive and screen-negative sam-
ples with the gold standard diagnostic procedure (i.e. the 
second phase). Alternately, the sensitivity and specificity 
of the ASSQ at a particular threshold could be approxi-
mated from previous validation studies (Ehlers et al., 1999; 
Posserud et  al., 2009; see Table 3). Or, one could avoid 
setting a strict cutoff altogether, instead stratifying the 
sample into score ranges (from the top to the bottom of the 
scale) and sampling from each stratum for second-phase 
evaluations.

In this study, the authors take none of these approaches 
with respect to estimating the sensitivity of their screener, 
instead simply assuming it to be 100%. This was not the 
most plausible assumption, per se, but it was the assump-
tion that was—as the authors correctly note—least likely 
to result in an overestimation of prevalence. We do not 
scrutinize this assumption at present; rather, we mention it 
because of its implication: given that 553 children with 
ASD would have been screened under the assumptions 
made to this point, all 553 children with ASD would have 
screened positive under a further assumption of 100% 
sensitivity.

This implies that the authors assumed 0 false negatives 
and used the second phase of the study to derive an estimate 
of 553 true positives (see Table 2). Although a complicated 
stratification procedure was employed in the second phase 
to derive this latter estimate of the number of true positives 
(a procedure that is difficult to faithfully reconstruct with-
out a full complement of methodological details and data 
beyond the scope of the original publication, and which we 
thus treat as a “black box”), a simple weigh-back procedure 
was then used to work backwards from the screening phase 
to the top of the flow chart, in order to derive the total prev-
alence estimate for the target population.

These are important bits of information because, given 
the number of presumed true positives (553), one can infer 
that there would have been 1189 false positives and 21,492 
true negatives (see Table 2). Thus, one can reconstruct the 
implied specificity of the screening procedure (the per-
centage of individuals without ASD that correctly screened 
negative): 95%.

We now ask the following questions: Is the presumed 
performance of this screener (100% sensitivity and 95% 
specificity) plausible? Is a point prevalence estimate of 
2.64% reasonable? What about an estimated 95% confi-
dence interval of (1.91%, 3.37%)?
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In order to address these questions, we perform Monte 
Carlo simulations of Kim et al.’s study. Simulations start at 
the beginning of the flow chart displayed in Figure 1 and 
mirror the methodology outlined above under various 
starting assumptions. Details of this simulation procedure 
are provided in Supplement 1 (provided online).

Results

The soundness of underlying assumptions 
is critical for the derivation of a meaningful 
prevalence estimate

Above, we identified several steps where assumptions were 
introduced by the authors in order to derive subsequent  

values. Specifically, assumptions regarding non-response 
bias (assumed to be zero) and sensitivity of the screener 
(assumed to be 100%) appear to be critical. What would be 
the implications of choosing different starting assumptions?

For example, the authors acknowledge the stigma 
around mental health diagnoses in South Korea (see 
Kang-Yi et al., 2013). So, what if, due to this stigma, the 
parents of children with ASD were actually 30% less likely 
to fill out the screener than previously assumed (corre-
sponding to a 44% ASD participation rate instead of 
63.5%)? This would increase the point prevalence estimate 
to 3.7%—a 40% increase in the resulting estimate results 
from a smaller change to a single underlying assumption. 
Alternatively, what if one assumed that the parents of chil-
dren with ASD were 30% more likely to participate than 

Special Education/Disability 
294

Regular Education Schools 
54,972

30 (of 41) Schools Participated 
36,592

23,234

Screened Positive 
1,742

Phase 1: Autism Spectrum Screening Questionnaire (ASSQ)

Stratified Sample 
1,111

Returned for Assessment 
234

Phase 2: Gold Standard Clinical Assessment

Consented for Assessment 
785

ASD Diagnosis 
152

Target Population 
55,266 Children

Figure 1.  A flow chart of the methodology of Kim et al. (2011). Additional details can be found in the original article.
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previously assumed (corresponding to an 83% ASD  
participation rate instead of 63.5%)? The point prevalence 
estimate would drop to 2.1%.

Similarly, what if the authors assumed a first-phase 
screener sensitivity of 80%, instead of 100%? The point 
prevalence estimate would increase to 3.2%.

Thus, the choice of assumptions heavily influences the 
derived estimate. Without additional information as to 
which values make the most sense (in terms of either non-
response bias or sensitivity), confidence in the resultant 
estimate will necessarily be limited.

Assumptions constrain other assumptions
As we have shown above, assumptions factor in quite 
heavily into the calculation of a prevalence estimate. Here, 
we show that assumptions can implicitly constrain the pos-
sible values of other key parameters entering into the prev-
alence calculation and that a set of assumptions can indeed 
be self-falsifying.

Because only 7.5% of children (1742 out of 23,234) 
screened positive at the first phase, the specificity of the 
screening procedure was actually constrained to be quite 
high; in fact, no matter what the presumed underlying 
prevalence, non-response bias, and screener sensitivity, 
the specificity of the screening instrument would have had 
to fall within a narrow range (93%–96%). If 2.64% preva-
lence is taken to be true (the point estimate that the authors 
derive), and zero non-response bias and 100% screener 
sensitivity are also assumed (the assumptions used by the 
authors to solve for that point estimate), then this set of 
constraints further implies that the specificity of the 
screener would have had to fall within a still narrower 
range (94%–95%). This specificity value (approximately 
95%) was not explicitly assumed or provided to the read-
ers, but was constrained by the other assumed and derived 
values. Now, we ask whether a sensitivity/specificity com-
bination of 100%/95% is actually characteristic of the 
screener they employed (the ASSQ).

Table 3.  A brief review of ASD screening instruments.

Autism screening tool Study Samples Sensitivity d′

ASSQ (Swedish; parent) Ehlers et al. (1999) ASD+ vs learning disability ⩽48% 1.4–2.1
ASSQ (Swedish; teacher) Ehlers et al. (1999) ASD+ vs learning disability 65% 1.3–1.9
ASSQ (Norwegian; parent) Posserud et al. (2009) Total population ⩽91% ⩽2.1
ASSQ (Norwegian; teacher) Posserud et al. (2009) Total population ⩽83% ⩽2.1
ASSQ (Norwegian; Max[Teacher, Parent]) Posserud et al. (2009) Total population ⩽91% ⩽2.4
ASSQ (Chinese; Parent) Guo et al. (2011) ASD+ vs. ASD− ⩽82% 2.3–2.9
Autism-spectrum quotient Baron-Cohen et al. (2001) ASD+ vs general population 86%–95% 2.4–3.0
Social Responsiveness Scale Constantino et al. (2007) PDD+ vs PDD− 75% 2.4
Social Communication Questionnaire Chandler et al. (2007) ASD+ vs general population 88% 2.8

Sensitivity arbitrarily depends on the cutoff selected; thus, we provide the (approximate) sensitivity of each instrument that would correspond to 
the 95% specificity implied by Kim et al. By contrast, d′ is theoretically threshold-independent and, here, conveys how well an instrument discrimi-
nates individuals with ASD from individuals without ASD.
ASSQ: Autism Spectrum Screening Questionnaire; ASD: autism spectrum disorder; PDD: pervasive developmental disorders.

Table 1.  The four possible outcomes of a screener like the ASSQ: true positives, false positives, true negatives, and false negatives. 

Screen positive Screen negative Total

Children with ASD True positives? False negatives? ?
Children without ASD False positives? True negatives? ?
Total 1742 21,492 23,234

ASSQ: Autism Spectrum Screening Questionnaire; ASD: autism spectrum disorder.

Table 2.  The true positives, false positives, true negatives, and false negatives yielded by the ASSQ, as implied by Kim et al.

Screen positive Screen negative Total

Children with ASD 553 0 553
Children without ASD 1189 21,492 22,681
Total 1742 21,492 23,234

ASSQ: Autism Spectrum Screening Questionnaire; ASD: autism spectrum disorder.
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High sensitivity (such as the assumed 100% screener 
sensitivity) generally comes at the expense of reduced 
specificity; in order to capture 100% of individuals with 
ASD with a non–gold standard instrument, there will be a 
substantial number of false positives. No screener has  
perfect sensitivity and specificity; otherwise, it would by 
definition be considered the gold standard.

Any screening instrument can be made to be 100% 
sensitive by imposing an arbitrarily low cutoff score. In 
the extreme case, a screening instrument that identifies 
everyone as having a condition would not only be 100% 
sensitive (i.e. producing no false negatives) but also be 
0% specific, and therefore wholly ineffective. Sensitivity 
and specificity are directly related to one another and can-
not be considered separately.

To facilitate comparisons across studies, we convert the 
sensitivity/specificity combination into a single d′ value,1 
which is a single measure of how well a screener discrimi-
nates between those with or without a condition. Table 3 
compiles the performance of the ASSQ across various 
studies, alongside the performances of some other com-
monly used screening instruments, for additional context. 
When the ASSQ was previously used with a total popula-
tion sample (as in this study), d′ was (at best) 2.4. Yet, the 
presumed d′ of the ASSQ in this study was at least 4,2 far 
more discriminative than the best performance reported in 
any previous study,3 including the studies that developed 
the instrument (Ehlers et al., 1999; Posserud et al., 2009).

We argue that this previously reported d′ of 2.4 is likely 
the ceiling performance for the ASSQ, as applied in this 
article, because of numerous practical challenges faced by 
Kim et al.

1.	 The optimal threshold derived by Posserud et  al. 
(2009) was set with retrospective knowledge of the 
positive and negative ASD cases, and thus was sus-
ceptible to overfitting. The threshold used by Kim 
et al. was set a priori.

2.	 Posserud et  al. (2009) achieved their best results 
when using the parent and teacher portions of the 
ASSQ in tandem. In this study, only a small minor-
ity of students (1%) had the teacher portion of the 
ASSQ completed. The vast majority of screen-posi-
tive cases (87%) and screen-negative cases (99%+) 
were decided on the basis of parent ASSQ alone.

3.	 A total of 6% of parent respondents did not com-
plete the second page of the ASSQ; thus, many of 
the items were inferred for their children.

4.	 The authors translated the ASSQ from the language 
in which it was validated to Korean, which seems 
unlikely to have improved its performance.

These practical constraints were no fault of the authors; 
indeed, they are consequences of very reasonable and defen-
sible decisions made at various stages of the research process. 

Nevertheless, each consideration serves to limit the possible 
performance of the ASSQ in this context. And, given a more 
realistic estimate of the performance of the screener, this par-
ticular combination of prevalence (2.64%), non-response bias 
(zero), and screener sensitivity (100%) is incompatible.

If the study had assumed a more realistic, lower sensi-
tivity, this would have resulted in an even higher preva-
lence estimate. That is, an estimate that was already an 
outlier with respect to the findings of other recent studies 
would have become even more extreme.

The uncertainty surrounding assumptions must 
be accounted for in the estimation procedure; 
otherwise, confidence intervals will be artificially 
small

It is clearly possible that assumptions of zero non-response 
bias and 100% screener sensitivity were incorrect. And an 
acknowledgment that one or both assumptions were pos-
sibly incorrect is the same as an acknowledgment that 
these assumed values could not have been known with 
perfect certainty.

A lack of certainty regarding assumptions is not a fatal 
problem, as long as researchers acknowledge these 
assumed parameters as meaningful sources of uncertainty 
surrounding the estimate they ultimately derive. However, 
Kim et al. apparently constructed their confidence intervals 
under the implicit assumption of precisely zero non-response 
bias and precisely 100% sensitivity. This would mean that 
their reported confidence intervals reflected uncertainty 
resulting from random sampling under the stated assump-
tions, and uncertainty surrounding the number of true posi-
tives estimated at the second phase, but did not reflect the 
additionally overlaid uncertainty surrounding the assump-
tions themselves. In other words, these values would have 
entered into the statistical model (or in our case, the simula-
tion) as singular, precise parameters, instead of as a distribu-
tion of plausible values for these parameters.

In order for the final derived prevalence estimate to be 
a meaningful communication to the clinical world, the 
estimate (and its confidence intervals) should account for 
all known, important sources of uncertainty. Otherwise, 
the conclusion would need to be continually qualified (i.e. 
ASD prevalence likely falls between 1.91% and 3.37% if 
one assumes zero non-response bias and a perfectly  
sensitive screener).

The authors assumed zero non-response bias because 
there were conflicting reasons why one might reasonably 
expect bias in either direction (e.g. the conflicting motiva-
tions of parents to avoid stigma, vs to obtain information 
that might help their children). Even so, one still must rec-
ognize that this bias parameter is unknown and could 
therefore—in the absence of any additional information—
plausibly exist along a wide range of possible values. The 
only hard constraints are that any individual could not 
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have been more than 100% likely to participate in the first-
phase screener, that 23,234 individuals actually partici-
pated, that 1742 children screened positive, and that 152 
screen-positive individuals in regular schools were later 
confirmed to be true cases of ASD.

Thus, rather than assuming with perfect confidence that 
63.5% of children with ASD participated in the screener 
(i.e. at the exact same rate as children without ASD; an 
assumption reflected in rows 1, 2, and 4 of Figure 2), it 
would perhaps be more realistic to assume that zero bias 
was the most likely scenario, while at the same time 
acknowledging that respondent rates between ~40% and 
~80% were also plausible (a different starting assumption 
reflected in rows 3 and 5 of Figure 2).

Similarly, one might permit wide ranges of possible 
screener sensitivities, based on the screener’s most likely 
psychometric properties. In our simulations, we allow for 
a variety of possibilities, with perhaps the most plausible 
case being something like 80%—that is, quite good in tan-
dem with 95% specificity, but by no means perfect (a start-
ing assumption reflected in rows 4 and 5 of Figure 2).

We are not the first to make these general points, even 
about this paper (Charman, 2011; Newschaffer, 2015). 
However, here we show quantitatively that if one acknowl-
edges that the authors did not know with certainty either 
the magnitude of non-response bias or the sensitivity of 
the screener, then the final estimate came packaged within 
a confidence interval that was artificially narrow in 
precision.

Row 1 of Figure 2 reflects the confidence interval that 
could hypothetically result from perfect knowledge of all 
three unknown parameters introduced by the two-phase 
design: the probability of a child with ASD participating in 
the study (first column), the sensitivity of the first-phase 
screener (second column), and the number of true posi-
tives captured by the screener (third column). This situa-
tion would result in correspondingly low uncertainty 
surrounding the final estimate; the narrow 95% confidence 
interval presented in the fourth column would only reflect 
random sampling error, and to achieve it would require a 
gold standard diagnostic test of all 1742 children captured 
by the first-phase screener, combined with perfect confi-
dence in the other critical assumptions.

Row 2 of Figure 2 represents our model of the authors’ 
estimation procedure. The probability of a child with ASD 
participating is assumed to be 63.5% (i.e. precisely the 
same as the non-ASD probability). The screener sensitiv-
ity is assumed to be precisely 100%. We model uncertainty 
around the estimated number of true positives as being 
normally distributed (µ = 553, σ  = 82; the estimated num-
ber of true positives and the uncertainty surrounding this 
estimate were derived by the authors via a stratification 
procedure and statistical inference method that we cannot 
faithfully reconstruct from the details provided in the orig-
inal article; for the purpose of simulation, we therefore 

treat the number of true positives as a value arising from an 
irreducible “black box”). Running simulations under this 
combination of assumptions replicates the point estimate 
(2.6%) and 95% confidence interval (1.9%, 3.4%) reported 
by the authors.

What if one allowed for uncertainty around non-
response bias (which we model as being sampled from a 
beta distribution; α = 10, β = 5.75), while still assuming 
perfect knowledge of the screener sensitivity? Row 3 
shows the 95% confidence interval that results from this 
modified prior assumption. It expands to (1.7%, 4.3%)—
75% larger than that which was reported by the authors.

What if one instead assumed perfect certainty around 
the non-response bias, but allowed for a range of plausible 
screener sensitivities (which we model as being sampled 
from a beta distribution; α = 12, β = 3)? Row 4 represents 
this modified set of assumptions and expands the 95% 
confidence interval to (2.2%, 4.5%)—50% larger than 
what was reported by the authors.

What if one allowed both of these assumptions to reflect 
a realistic level of uncertainty (row 5)? We argue that a 
95% confidence interval reflecting these two sources of 
uncertainty not accounted for in the original publication 
would probably resemble (2.0%, 5.4%)—more than twice 
as wide as that which was originally reported. The point 
estimate, too, would rise to ~3.3%—owing mostly to the 
entertained possibility of less-than-perfect screener 
sensitivity.

Conclusion: A prevalence estimate of 2.64% 
was derived based on incorrect assumptions 
and likely presented within a confidence 
interval that was unrealistically narrow
We have now demonstrated that at least one stated assump-
tion was probably incorrect. We have also shown that the 
reported confidence interval was artificially narrow, owing 
to a failure to account for the fallibility of the assumptions.

Here, it should be emphasized that an estimated number 
of true positives (true cases of ASD who screened positive at 
the first phase) may actually be consistent with many pos-
sible underlying prevalences, non-response biases, and first-
phase screener sensitivities. Even if one knew that precisely 
553 true positives had been captured by the first-phase 
screener, one would still not have solved for a point, but for 
a surface (mathematically, a manifold with 2 degrees of 
freedom) embedded in the three-dimensional parameter 
space (represented in black in Figure 3). The authors made 
assumptions to artificially constrain two of these parameters 
(non-response bias and screener sensitivity) to derive the 
point estimate (represented by the red circle in Figure 3). 
This estimate represents the point in the three-dimensional 
parameter space presented by the authors as the most plau-
sible: 2.64% prevalence, 0 participation bias, 100% sensi-
tivity/95% specificity of the screener. But there was a whole 
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universe of other possibilities to choose from, many of 
which may in fact have been more reasonable.

Discussion

Two-phase epidemiological studies aim to increase the 
efficiency by which precise and accurate prevalence esti-
mates can be achieved, relative to a single-phase proce-
dure. By employing a two-phase design, Kim et  al. 
produced an estimate that implied 292 gold standard clini-
cal assessments had been leveraged into a 95% confidence 
interval for ASD4 prevalence of (1.91%, 3.37%), purport-
edly generalizable to a broader population of 55,266 South 
Korean children. To achieve an estimate of similar preci-
sion with a single-phase design (given a true underlying 
ASD prevalence of 2.64%), one would have had to admin-
ister gold standard evaluations to approximately 2000 

randomly selected children from the target population—
nearly seven times as many.

We argue that this level of reported precision is illusory and 
only achieved by not accounting for sources of uncertainty 
arising from the introduction of the screening instrument and 
potential non-response bias. A truer reflection of the precision 
they achieved would have been conveyed by a point estimate 
of 3.3% and a confidence interval of (2.0%, 5.4%)—a preva-
lence estimate that is simultaneously both imprecise and 25% 
higher than their original estimate, which was already the 
highest on the scientific record. We emphasize that we do not 
claim that 3.3% would be a more accurate estimate of ASD 
prevalence; rather, we note that an estimation procedure yield-
ing this result would give us pause to question whether the 
added methodological and statistical complications intro-
duced by a multiple-phase design had efficiently increased the 
accuracy or precision of the prevalence estimate in this case.
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Figure 3.  The black surface represents the possible combinations of ASD prevalences, screener sensitivities, and non-response 
biases that would be consistent with 553 screener true positives. The cloud of green points is sampled in proportion to the 
plausibility of that combination, given 553 screener true positives. The red circle conveys the point estimate put forth by Kim et al.: 
2.64% ASD prevalence, 100% screener sensitivity, and zero non-response bias. (For interpretation of the references to color in this 
figure legend, the reader is referred to the online version of this article.)
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The authors apparently took great care in the quality 
control of their gold standard diagnostic procedure, which 
was especially commendable in light of potentially chal-
lenging cultural considerations. The benefits yielded by 
such care, however, can be hijacked by vulnerabilities else-
where in a study’s design. A one-phase design may be 
ostensibly inefficient, but will only introduce non-response 
bias once. Each additional phase introduces new vulnera-
bilities, and in the case of Kim et al., potential non-response 
bias was introduced no fewer than three times: once for 
response to the first-phase screener (which we attempted to 
account for in our analysis), once in obtaining consent for 
the second-phase diagnostic procedure, and once when 
only a minority subset of the consenting individuals actu-
ally returned for evaluation. The assumption of precisely 
zero non-response bias becomes increasingly tenuous as 
each new opportunity for bias is introduced. The relative 
simplicity and transparency of a single-phase study—both 
in terms of administration and subsequent statistical infer-
ence—should not be underestimated as practical benefits of 
this approach.

For researchers embarking on the ambitious task of 
prevalence estimation in a total population sample, we 
endorse several prescriptions already put forth by others. 
The larger the study participation rate, the less possible 
influence non-response bias can have on the resulting esti-
mate. Before embarking on a two-phase design, one should 
give serious consideration to the sensitivity and specificity 
of the screening tools at one’s disposal. If one decides 
upon a two-phase design, then it is probably best to avoid 
strict cutoff scores altogether, but if such a threshold is 
applied, then the first-phase screener should be calibrated 
by the second-phase (gold standard) assessment—which 
means also testing some of the screen-negative cases. 
Finally, one should fully explore the implications of all 
assumptions that factor into the calculation of the preva-
lence estimate (e.g. how assuming a particular sensitivity 
would constrain possible specificities).

On the other hand, we acknowledge that statistical effi-
ciency in deriving a prevalence estimate is not always the 
sole consideration in a study’s design. If Kim et  al. had 
assessed a certain number of screen-negative cases with 
the gold standard diagnostic procedure (as we prescribe 
above), then limited resources would have been diverted 
from the gold standard assessment of an equal number of 
screen-positive cases. Because the latter assessments are 
more likely to uncover actual cases of ASD and because 
helpful interventions may be available for the newly diag-
nosed, ethical considerations at the individual level here 
trade off with statistical considerations. Kim and col-
leagues identified many individuals in mainstream schools 
whose condition was previously unknown to both parents 
and schools (n = 152, corresponding to 0.3% of the popu-
lation), and the benefits to these children and their families 
may be quite significant.

As a final note, we do not wish to detract from the 
much-needed attention the study has brought to mental 
illness (and ASD in particular) in South Korea and 
beyond. We remain hopeful that continued research aim-
ing to apply rigorous diagnostic procedures to total popu-
lations (like Kim et al., 2011) may indeed result in better 
estimates of ASD prevalence than have been obtainable 
in the past.
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Notes

1.	 This formula may be used to estimate d′: norminv 
(sensitivity) − norminv(1 − specificity), where norminv is 
the inverse cumulative distribution function of the standard 
normal.

2.	 d′ is infinite when sensitivity is 100%; an estimated d′ of 4 
would result from instead assuming 99% sensitivity.

3.	 One study (Mattila et al., 2012) that employed the Autism 
Spectrum Screening Questionnaire (ASSQ) reported a d′ of 
4+, but this study, too, assumed 100% sensitivity at a given 
cutoff rather than measuring it.

4.	 The original article reported 286 assessments, adjusted in 
subsequent Corrections.
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